Extremal Quantile Regression

نویسنده

  • VICTOR CHERNOZHUKOV
چکیده

Quantile regression is an important tool for estimation of conditional quantiles of a response Y given a vector of covariates X. It can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. This paper develops a theory of quantile regression in the tails. Specifically, it obtains the large sample properties of extremal (extreme order and intermediate order) quantile regression estimators for the linear quantile regression model with the tails restricted to the domain of minimum attraction and closed under tail equivalence across regressor values. This modeling set up combines restrictions of extreme value theory with leading homoscedastic and heteroscedastic linear specifications of regression analysis. In large samples, extreme order regression quantiles converge weakly to arg min functionals of stochastic integrals of Poisson processes that depend on regressors, while intermediate regression quantiles and their functionals converge to normal vectors with variance matrices dependent on the tail parameters and the regressor design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference for Extremal Conditional Quantile Models, with an Application to Market and Birthweight Risks

Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applied to the tails, is of interest in many economic and financial applications, such as conditional value-at-risk, production efficiency, and adjustmen...

متن کامل

Inference for Extremal Conditional Quantile Models (extreme Value Inference for Quantile Regression)

Quantile regression is a basic tool for estimation of conditional quantiles of a response variable given a vector of regressors. It can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. Quantile regression applied to the tails, or simply extremal quantile regression is of interest in numerous economic and financial appli...

متن کامل

EXTREMAL QUANTILE REGRESSION 3 quantile regression

Quantile regression is an important tool for estimation of conditional quantiles of a response Y given a vector of covariates X. It can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. This paper develops a theory of quantile regression in the tails. Specifically , it obtains the large sample properties of extremal (ext...

متن کامل

A Closer Examination of Extreme Value Theory Modeling in Value-at-Risk Estimation

Extreme value theory has been widely used for modeling the tails of return distribution. Generalized Pareto distribution (GPD) is popularly acknowledged as one of the major tools in Value-at-Risk (VaR) estimation. As Basel II stipulates the significance level for VaR estimation from previous 5% quantile level to more extremal quantile levels at 1%, it demands a more accurate estimation approach...

متن کامل

On kernel smoothing for extremal quantile regression

Nonparametric regression quantiles obtained by inverting a kernel estimator of the conditional distribution of the response are long established in statistics. Attention has been, however, restricted to ordinary quantiles staying away from the tails of the conditional distribution. The purpose of this paper is to extend their asymptotic theory far enough into the tails. We focus on extremal qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005